On methods for stabilizing constraints over enriched interfaces in elasticity
نویسندگان
چکیده
Enriched finite element approaches such as the extended finite element method provide a framework for constructing approximations to solutions of non-smooth problems. Internal features, such as boundaries, are represented in such methods by using discontinuous enrichment of the standard finite element basis. Within such frameworks, however, imposition of interface constraints and/or constitutive relations can cause unexpected difficulties, depending upon how relevant fields are interpolated on un-gridded interfaces. This work address the stabilized treatment of constraints in an enriched finite element context. Both the Lagrange multiplier and penalty enforcement of tied constraints for an arbitrary boundary represented in an enriched finite element context can lead to instabilities and artificial oscillations in the traction fields. We demonstrate two alternative variational methods that can be used to enforce the constraints in a stable manner. In a ‘bubble-stabilized approach,’ fine-scale degrees of freedom are added over elements supporting the interface. The variational form can be shown to have a similar form to a second approach we consider, Nitsche’s method, with the exception that the stabilization terms follow directly from the bubble functions. In this work, we examine alternative variational methods for enforcing a tied constraint on an enriched interface in the context of two-dimensional elasticity. We examine several benchmark problems in elasticity, and show that only Nitsche’s method and the bubble-stabilization approach produce stable traction fields over internal boundaries. We also demonstrate a novel difference between the penalty method and Nitsche’s method in that the latter passes the patch test exactly, regardless of the stabilization parameter’s magnitude. Results for more complicated geometries and triple interface junctions are also presented. Copyright 2008 John Wiley & Sons, Ltd.
منابع مشابه
A FETI-DP Formulation of Three Dimensional Elasticity Problems with Mortar Discretization
Abstract. In this paper, a FETI-DP formulation for the three dimensional elasticity problem on non-matching grids over a geometrically conforming subdomain partition is considered. To resolve the nonconformity of the finite elements, a mortar matching condition on the subdomain interfaces (faces) is imposed. By introducing Lagrange multipliers for the mortar matching constraints, the resulting ...
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملA FETI-DP Formulation for Compressible Elasticity with Mortar Constraints
A FETI-DP formulation for three dimensional elasticity problems on non-matching grids is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on subdomain interfaces. The mortar matching condition are considered as weak continuity constraints in the FETIDP formulation. A relatively large set of primal constraints, which include average and mome...
متن کاملA Feti-dp Algorithm for Elasticity Problems with Mortar Discretization on Geometrically Non-conforming Partitions
Abstract. In this paper, a FETI-DP formulation for three dimensional elasticity on non-matching grids over geometrically non-conforming subdomain partitions is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on the subdomain interfaces (faces). A FETI-DP algorithm is then built by enforcing the mortar matching condition in dual and primal ...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کامل